Joint superpixel and Transformer for high resolution remote sensing image classification

Author:

Dang Guangpu,Mao Zhongan,Zhang Tingyu,Liu Tao,Wang Tao,Li Liangzhi,Gao Yu,Tian Runqing,Wang Kun,Han Ling

Abstract

AbstractDeep neural networks combined with superpixel segmentation have proven to be superior to high-resolution remote sensing image (HRI) classification. Currently, most HRI classification methods that combine deep learning and superpixel segmentation use stacking on multiple scales to extract contextual information from segmented objects. However, this approach does not take into account the contextual dependencies between each segmented object. To solve this problem, a joint superpixel and Transformer (JST) framework is proposed for HRI classification. In JST, HRI is first segmented into superpixel objects as input, and Transformer is used to model the long-range dependencies. The contextual relationship between each input superpixel object is obtained and the class of analyzed objects is output by designing an encoding and decoding Transformer. Additionally, we explore the effect of semantic range on classification accuracy. JST is also tested by using two HRI datasets with overall classification accuracy, average accuracy and Kappa coefficients of 0.79, 0.70, 0.78 and 0.91, 0.85, 0.89, respectively. The effectiveness of the proposed method is compared qualitatively and quantitatively, and the results achieve competitive and consistently better than the benchmark comparison method.

Funder

Inner scientific research project of Shaanxi Land Engineering Construction Group

Key Research and Development Program of Shaanxi

Shaanxi Province Enterprises Talent Innovation Striving to Support the Plan

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3