IoT malware detection architecture using a novel channel boosted and squeezed CNN

Author:

Asam Muhammad,Khan Saddam Hussain,Akbar Altaf,Bibi Sameena,Jamal Tauseef,Khan Asifullah,Ghafoor Usman,Bhutta Muhammad Raheel

Abstract

AbstractInteraction between devices, people, and the Internet has given birth to a new digital communication model, the internet of things (IoT). The integration of smart devices to constitute a network introduces many security challenges. These connected devices have created a security blind spot, where cybercriminals can easily launch attacks to compromise the devices using malware proliferation techniques. Therefore, malware detection is a lifeline for securing IoT devices against cyberattacks. This study addresses the challenge of malware detection in IoT devices by proposing a new CNN-based IoT malware detection architecture (iMDA). The proposed iMDA is modular in design that incorporates multiple feature learning schemes in blocks including (1) edge exploration and smoothing, (2) multi-path dilated convolutional operations, and (3) channel squeezing and boosting in CNN to learn a diverse set of features. The local structural variations within malware classes are learned by Edge and smoothing operations implemented in the split-transform-merge (STM) block. The multi-path dilated convolutional operation is used to recognize the global structure of malware patterns. At the same time, channel squeezing and merging helped to regulate complexity and get diverse feature maps. The performance of the proposed iMDA is evaluated on a benchmark IoT dataset and compared with several state-of-the CNN architectures. The proposed iMDA shows promising malware detection capacity by achieving accuracy: 97.93%, F1-Score: 0.9394, precision: 0.9864, MCC: 0. 8796, recall: 0.8873, AUC-PR: 0.9689 and AUC-ROC: 0.9938. The strong discrimination capacity suggests that iMDA may be extended for the android-based malware detection and IoT Elf files compositely in the future.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3