IoT malware detection using static and dynamic analysis techniques: A systematic literature review

Author:

Kumar Sumit1,Ahlawat Prachi1ORCID,Sahni Jyoti2

Affiliation:

1. Department of Computer Science and Engineering The NorthCap University Gurugram India

2. School of Engineering and Computer Science Victoria University of Wellington Wellington New Zealand

Abstract

AbstractThe Internet of Things (IoT) is reshaping the world with its potential to support new and evolving applications in areas, such as healthcare, automation, remote monitoring, and so on. This rapid popularity and growth of IoT‐based applications coincides with a significant surge in threats and malware attacks on IoT devices. Furthermore, the widespread usage of Linux‐based systems in IoT devices makes malware detection a challenging task. Researchers and practitioners have proposed a variety of techniques to address these threats in the IoT ecosystem. Both researchers and practitioners have proposed a range of techniques to counter these threats within the IoT ecosystem. However, despite the multitude of proposed techniques, there remains a notable absence of a comprehensive and systematic review assessing the efficacy of static and dynamic analysis methods in detecting IoT malware. This research work is a systematic literature review (SLR) that aims to offer a concise summary of the latest advancements in the field of IoT malware detection, specifically focusing on the utilization of static and dynamic analytic techniques. The SLR focuses on examining the present status of research, methodology, and trends in the area of IoT malware detection. It accomplishes this by synthesizing the findings from a wide range of scholarly works that have been published in well‐regarded academic journals and conferences. Additionally, the SLR highlights the significance of the empirical process that includes the role of selecting datasets, accurate feature selection and the utilization of machine learning algorithms in enhancing the detection accuracy. The study also evaluates the capability of different analysis techniques to detect malware and compares the performance of various models for IoT malware detection. Furthermore, the review concluded by addressing several open issues and challenges that the research community as a whole must address.

Publisher

Wiley

Reference122 articles.

1. Blockchain for 5G‐enabled IoT for industrial automation: a systematic review, solutions, and challenges;Mistry I;Mech Syst Signal Process,2020

2. A look at examples of IoT devices and their business applications in 2023.https://www.insiderintelligence.com/insights/internet‐of‐things‐devices‐examples/2023.

3. SonicWall Threat Intelligence Report.2023https://www.sonicwall.com/2023‐cyber‐threat‐report/Accessed: September 23 2023.

4. Security attacks in IoT: A survey

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3