A logarithmically amortising temperature effect for supervised learning of wheat solar disinfestation of rice weevil Sitophilus oryzae (Coleoptera: Curculionidae) using plastic bags

Author:

Abdelsamea Mohammed M.,Gaber Mohamed Medhat,Ali Aliyuda,Kyriakou Marios,Fawki Shams

Abstract

AbstractThis work investigates the effectiveness of solar heating using clear polyethylene bags against rice weevil Sitophilus oryzae (L.), which is one of the most destructive insect pests against many strategic grains such as wheat. In this paper, we aim at finding the key parameters that affect the control heating system against stored grain insects while ensuring that the wheat grain quality is maintained. We provide a new benchmark dataset, where the experimental and environmental data was collected based on fieldwork during the summer in Canada. We measure the effectiveness of the solution using a novel formula to describe the amortising temperature effect on rice weevil. We adopted different machine learning models to predict the effectiveness of our solution in reaching a lethal heating condition for insect pests, and hence measure the importance of the parameters. The performance of our machine learning models has been validated using a 10-fold cross-validation, showing a high accuracy of 99.5% with 99.01% recall, 100% precision and 99.5% F1-Score obtained by the Random Forest model. Our experimental study on machine learning with SHAP values as an eXplainable post-hoc model provides the best environmental conditions and parameters that have a significant effect on the disinfestation of rice weevils. Our findings suggest that there is an optimal medium-sized grain amount when using solar bags for thermal insect disinfestation under high ambient temperatures. Machine learning provides us with a versatile model for predicting the lethal temperatures that are most effective for eliminating stored grain insects inside clear plastic bags. Using this powerful technology, we can gain valuable information on the optimal conditions to eliminate these pests. Our model allows us to predict whether a certain combination of parameters will be effective in the treatment of insects using thermal control. We make our dataset publicly available under a Creative Commons Licence to encourage researchers to use it as a benchmark for their studies.

Funder

Science and Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3