Trait‐dependent plasticity erodes rapidly with repeated intergenerational acclimation in an invasive agricultural pest

Author:

Mlambo Shaw1ORCID,Machekano Honest23ORCID,Mvumi Brighton M.4ORCID,Cuthbert Ross N.5ORCID,Nyamukondiwa Casper16ORCID

Affiliation:

1. Department of Biological Sciences and Biotechnology Botswana International University of Science and Technology Palapye Botswana

2. Department of Zoology and Entomology University of Pretoria Hatfield Pretoria South Africa

3. Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria Hatfield Pretoria South Africa

4. Department of Agricultural and Biosystems Engineering, Faculty of Agriculture Environment and Food Systems University of Zimbabwe Harare Zimbabwe

5. Institute for Global Food Security, School of Biological Sciences Queen's University Belfast Belfast UK

6. Department of Zoology and Entomology Rhodes University Makhanda South Africa

Abstract

AbstractClimate change is associated with increased mean temperatures and amplitudes manifesting both acutely and chronically, triggering organism stress responses that confer fitness costs and/or benefits. The larger grain borer (LGB), Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) is an invasive postharvest agricultural pest. While host shift is its well‐known potential invasive mechanism, how repeated intergenerational stress environments may influence offspring phenotypes is largely unknown. We thus evaluated physiological and ecological performance of LGB following repeated intergenerational acute heat acclimation to insinuate its likely responses to projected increased bouts of heat stress associated with climate change. Parental colonies were acutely heat‐acclimated separately at 35°C and 38°C; 80% RH for 2 h in climate chambers and released onto sterilized maize grain at optimal conditions (32°C, 80% RH). The F1 progenies were, respectively, acclimated at the same conditions and incubated to F2 generation. We then evaluated physiological and ecological performance under optimal conditions across parental, F1 and F2 generations. Our results showed that plasticity was highly trait dependent, and that acclimation did not affect F1 and F2 critical thermal maxima, but did improve critical thermal minima. However, while acclimation improved heat knockdown time at F1, repeated acclimation significantly reduced heat knockdown times at F2, suggesting plasticity erosion with generational repeated acclimations. Acute acclimation negatively affected ecological performance of F1 generations although this was restored with repeated acclimation in F2 populations. Our results suggest that the LGB may inflict more economic damage with repeated heat stress due to generational adaptation to temperature stress. The results contribute to knowledge on pest forecasting modelling under changing climates and provides a framework for phytosanitary adjustments in heat treatment protocols for international grain trade.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3