Diversity of life history and population connectivity of threadfin fish Eleutheronema tetradactylum along the coastal waters of Southern China

Author:

Xuan Zhongya,Wang Wen-Xiong

Abstract

AbstractUnderstanding the diversity of life history, life stage connectivity and population is essential to determine the spatial scale over which fish populations operate. Otolith microchemistry analysis is a powerful tool to elucidate the life history and population connectivity of fish, providing important insights to the natal origin and population structure. In this study, we used laser ablation inductively coupled plasma mass spectrometry to analyze the chemical composition of otoliths throughout the entire lifetime of endangered fourfinger threadfin species, Eleutheronema tetradactylum. We reconstructed the life history of E. tetradactylum from Southern China collected from different locations over a spatial scale of 1200 km. Sr:Ca and Ba:Ca ratios profiles from otolith core-to-edge analysis suggested two contrasting life history patterns. Based on the differences in early life stages, we identified some fish spending their first year in an estuarine environment with subsequent movement to marine coastal systems, while some fish remaining in the coastal systems throughout their entire early life history stages. The non-metric multi-dimensional scaling showed a strong overlap in otolith core elemental composition, indicating a large-scale connectivity in the life history of E. tetradactylum. The immature fish from different natal origins mixed to a large extent when they fed and overwintered in the extensive offshore waters. Clustering of near core chemistry pointed to three possible sources of nursery for the threadfin fish. This study demonstrated the diversity of life history patterns of E. tetradactylum in Southern Chinese waters. Restoration in egg and larvae densities in coastal waters and estuaries may enhance their population abundances.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3