Bayesian forecasting of disease spread with little or no local data

Author:

Cook Jonathan D.,Williams David M.,Walsh Daniel P.,Hefley Trevor J.

Abstract

AbstractRapid and targeted management actions are a prerequisite to efficiently mitigate disease outbreaks. Targeted actions, however, require accurate spatial information on disease occurrence and spread. Frequently, targeted management actions are guided by non-statistical approaches that define the affected area by a pre-determined distance surrounding a small number of disease detections. As an alternative, we present a long-recognized but underutilized Bayesian technique that uses limited local data and informative priors to make statistically valid predictions and forecasts about disease occurrence and spread. As a case study, we use limited local data that were available after the detection of chronic wasting disease in Michigan, U.S. along with information rich priors obtained from a previous study in a neighboring state. Using these limited local data and informative priors, we generate statistically valid predictions of disease occurrence and spread for the Michigan study area. This Bayesian technique is conceptually and computationally simple, relies on little to no local data, and is competitive with non-statistical distance-based metrics in all performance evaluations. Bayesian modeling has added benefits because it allows practitioners to generate immediate forecasts of future disease conditions and provides a principled framework to incorporate new data as they accumulate. We contend that the Bayesian technique offers broad-scale benefits and opportunities to make statistical inference across a diversity of data-deficient systems, not limited to disease.

Funder

Michigan Department of Natural Resources

Hal and Jean Glassen Memorial Foundation

Boone and Crockett Quantitative Wildlife Center at MSU

College of Agriculture and Natural Resources, Michigan State University

U.S. Department of the Interior

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3