A Bayesian approach for estimating the uncertainty on the contribution of nitrogen fixation and calculation of nutrient balances in grain legumes

Author:

Palmero Francisco,Hefley Trevor J.,Lacasa Josefina,Almeida Luiz Felipe,Haro Ricardo J.,Garcia Fernando O.,Salvagiotti Fernando,Ciampitti Ignacio A.

Abstract

Abstract Background The proportion of nitrogen (N) derived from the atmosphere (Ndfa) is a fundamental component of the plant N demand in legume species. To estimate the N benefit of grain legumes for the subsequent crop in the rotation, a simplified N balance is frequently used. This balance is calculated as the difference between fixed N and removed N by grains. The Ndfa needed to achieve a neutral N balance (hereafter $$\theta$$ θ ) is usually estimated through a simple linear regression model between Ndfa and N balance. This quantity is routinely estimated without accounting for the uncertainty in the estimate, which is needed to perform formal statistical inference about $$\theta$$ θ . In this article, we utilized a global database to describe the development of a novel Bayesian framework to quantify the uncertainty of $$\theta$$ θ . This study aimed to (i) develop a Bayesian framework to quantify the uncertainty of $$\theta$$ θ , and (ii) contrast the use of this Bayesian framework with the widely used delta and bootstrapping methods under different data availability scenarios. Results The delta method, bootstrapping, and Bayesian inference provided nearly equivalent numerical values when the range of values for Ndfa was thoroughly explored during data collection (e.g., 6–91%), and the number of observations was relatively high (e.g., $$\ge 100$$ 100 ). When the Ndfa tested was narrow and/or sample size was small, the delta method and bootstrapping provided confidence intervals containing biologically non-meaningful values (i.e. < 0% or > 100%). However, under a narrow Ndfa range and small sample size, the developed Bayesian inference framework obtained biologically meaningful values in the uncertainty estimation. Conclusion In this study, we showed that the developed Bayesian framework was preferable under limited data conditions ─by using informative priors─ and when uncertainty estimation had to be constrained (regularized) to obtain meaningful inference. The presented Bayesian framework lays the foundation not only to conduct formal comparisons or hypothesis testing involving $$\theta$$ θ , but also to learn about its expected value, variance, and higher moments such as skewness and kurtosis under different agroecological and crop management conditions. This framework can also be transferred to estimate balances for other nutrients and/or field crops to gain knowledge on global crop nutrient balances.

Funder

Kansas State University

Kansas Corn Commission

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3