AutoML-ID: automated machine learning model for intrusion detection using wireless sensor network

Author:

Singh Abhilash,Amutha J.,Nagar Jaiprakash,Sharma Sandeep,Lee Cheng-Chi

Abstract

AbstractMomentous increase in the popularity of explainable machine learning models coupled with the dramatic increase in the use of synthetic data facilitates us to develop a cost-efficient machine learning model for fast intrusion detection and prevention at frontier areas using Wireless Sensor Networks (WSNs). The performance of any explainable machine learning model is driven by its hyperparameters. Several approaches have been developed and implemented successfully for optimising or tuning these hyperparameters for skillful predictions. However, the major drawback of these techniques, including the manual selection of the optimal hyperparameters, is that they depend highly on the problem and demand application-specific expertise. In this paper, we introduced Automated Machine Learning (AutoML) model to automatically select the machine learning model (among support vector regression, Gaussian process regression, binary decision tree, bagging ensemble learning, boosting ensemble learning, kernel regression, and linear regression model) and to automate the hyperparameters optimisation for accurate prediction of numbers of k-barriers for fast intrusion detection and prevention using Bayesian optimisation. To do so, we extracted four synthetic predictors, namely, area of the region, sensing range of the sensor, transmission range of the sensor, and the number of sensors using Monte Carlo simulation. We used 80% of the datasets to train the models and the remaining 20% for testing the performance of the trained model. We found that the Gaussian process regression performs prodigiously and outperforms all the other considered explainable machine learning models with correlation coefficient (R = 1), root mean square error (RMSE = 0.007), and bias = − 0.006. Further, we also tested the AutoML performance on a publicly available intrusion dataset, and we observed a similar performance. This study will help the researchers accurately predict the required number of k-barriers for fast intrusion detection and prevention.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AutoML-GWL: Automated machine learning model for the prediction of groundwater level;Engineering Applications of Artificial Intelligence;2024-01

2. κ-Coverage Reliability for Wireless Multihop Network incorporating Boundary Effect;Computer Networks;2024-01

3. Deep Learning-Inspired IoT-IDS Mechanism for Edge Computing Environments;Sensors;2023-12-16

4. ML-Based Intrusion Detection Systems in IoT Networks: A Survey;2023 Eleventh International Conference on Intelligent Computing and Information Systems (ICICIS);2023-11-21

5. Hybrid Model-Based Intrusion Detection in Wireless Sensor Network on the Basis of Risk and Link Quality;Journal of Interconnection Networks;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3