Deep Learning-Inspired IoT-IDS Mechanism for Edge Computing Environments

Author:

Aldaej Abdulaziz1ORCID,Ahanger Tariq Ahamed2ORCID,Ullah Imdad3ORCID

Affiliation:

1. College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department of Management Information Systems, College of Business Administration (CoBA), Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia

3. School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

The Internet of Things (IoT) technology has seen substantial research in Deep Learning (DL) techniques to detect cyberattacks. Critical Infrastructures (CIs) must be able to quickly detect cyberattacks close to edge devices in order to prevent service interruptions. DL approaches outperform shallow machine learning techniques in attack detection, giving them a viable alternative for use in intrusion detection. However, because of the massive amount of IoT data and the computational requirements for DL models, transmission overheads prevent the successful implementation of DL models closer to the devices. As they were not trained on pertinent IoT, current Intrusion Detection Systems (IDS) either use conventional techniques or are not intended for scattered edge–cloud deployment. A new edge–cloud-based IoT IDS is suggested to address these issues. It uses distributed processing to separate the dataset into subsets appropriate to different attack classes and performs attribute selection on time-series IoT data. Next, DL is used to train an attack detection Recurrent Neural Network, which consists of a Recurrent Neural Network (RNN) and Bidirectional Long Short-Term Memory (LSTM). The high-dimensional BoT-IoT dataset, which replicates massive amounts of genuine IoT attack traffic, is used to test the proposed model. Despite an 85 percent reduction in dataset size made achievable by attribute selection approaches, the attack detection capability was kept intact. The models built utilizing the smaller dataset demonstrated a higher recall rate (98.25%), F1-measure (99.12%), accuracy (99.56%), and precision (99.45%) with no loss in class discrimination performance compared to models trained on the entire attribute set. With the smaller attribute space, neither the RNN nor the Bi-LSTM models experienced underfitting or overfitting. The proposed DL-based IoT intrusion detection solution has the capability to scale efficiently in the face of large volumes of IoT data, thus making it an ideal candidate for edge–cloud deployment.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3