Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields

Author:

Alvarez-Alvarado Manuel S.,Alban-Chacón Francisco E.,Lamilla-Rubio Erick A.,Rodríguez-Gallegos Carlos D.,Velásquez Washington

Abstract

AbstractBased on the behavior of the quantum particles, it is possible to formulate mathematical expressions to develop metaheuristic search optimization algorithms. This paper presents three novel quantum-inspired algorithms, which scenario is a particle swarm that is excited by a Lorentz, Rosen–Morse, and Coulomb-like square root potential fields, respectively. To show the computational efficacy of the proposed optimization techniques, the paper presents a comparative study with the classical particle swarm optimization (PSO), genetic algorithm (GA), and firefly algorithm (FFA). The algorithms are used to solve 24 benchmark functions that are categorized by unimodal, multimodal, and fixed-dimension multimodal. As a finding, the algorithm inspired in the Lorentz potential field presents the most balanced computational performance in terms of exploitation (accuracy and precision), exploration (convergence speed and acceleration), and simulation time compared to the algorithms previously mentioned. A deeper analysis reveals that a strong potential field inside a well with weak asymptotic behavior leads to better exploitation and exploration attributes for unimodal, multimodal, and fixed-multimodal functions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference58 articles.

1. Venter, G. Review of optimization techniques. In Encyclopedia of Aerospace Engineering (ed. Venter, G.) (Wiley, 2010).

2. Shrestha, A. & Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065 (2019).

3. Hussain, K., Salleh, M. N. M., Cheng, S. & Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 52, 2191–2233 (2019).

4. Chambers, L. D. Practical Handbook of Genetic Algorithms: Complex Coding Systems, Vol. 3 (CRC Press, 2019).

5. Saini, N. Review of selection methods in genetic algorithms. Int. J. Eng. Comput. Sci. 6, 22261–22263 (2017).

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3