Sea cucumbers bioturbation potential outcomes on marine benthic trophic status under different temperature regimes

Author:

Ennas Claudia,Pasquini Viviana,Abyaba Hiba,Addis Pierantonio,Sarà Gianluca,Pusceddu Antonio

Abstract

AbstractEutrophication affects coastal oceans worldwide, modifies primary production and sediment biogeochemistry and, overall, is progressively compromising marine ecosystems’ integrity. Because of their known bioturbation ability, sea cucumbers are supposed to be candidates for mitigating benthic eutrophication. To provide insights on this, we investigated differences in organic matter quantity and biochemical composition (as proxies of benthic trophic status) of sediments and feces of the sea cucumber Holothuria tubulosa acclimated in mesocosms at temperatures comprised between natural conditions (14–26 °C) and an extreme of 29 °C (representing the highest anomaly under heat waves in the Mediterrranean Sea). Organic matter features differed significantly between sediments characterized by different trophic statuses and the holothuroid’s feces, though with some exceptions. Feces resulted almost always organically enriched when compared with the ambient sediments, though with variable differences in composition in sediments characterized by different initial trophic status. Our results point out that sea cucumbers maintain their bioreactor capacity at all experimental temperatures including the (anomalous) highest one, irrespectively of the available food, suggesting that they could be profitably utilized to mitigate benthic eutrophication also in a warmer Mediterranean Sea.

Funder

EU co-founded by ERA-NET BlueBio programme

Ministero dell'Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3