Seafloor bioturbation intensity on the deep sea: More complex than organic matter

Author:

Miguez‐Salas Olmo12ORCID,Saeedi Hanieh1,Brandt Angelika13,Riehl Torben13

Affiliation:

1. Department of Marine Zoology Senckenberg Research Institute Frankfurt Germany

2. Departamento de Estratigrafía y Paleontología Universidad de Granada Granada Spain

3. Department of Biological Sciences, Institute of Ecology, Evolution and Diversity Johann Wolfgang Goethe University Frankfurt Frankfurt Germany

Abstract

AbstractDeep‐sea benthic communities are strongly controlled by the quantity and quality of organic matter sinking from the ocean surface. The interaction between benthic fauna and seafloor sediments mainly occurs through bioturbation that modifies substrate properties (e.g., geochemical profiles). The intensity of the bioturbation has long been linked with organic matter and measured as a diffusive process by considering the vertical particle reworking (endobenthic bioturbation), disregarding the seafloor horizontal mixing (epibenthic bioturbation). Here, a novel approach to quantify horizontal mixing is presented: Seafloor Bioturbation Intensity (SBI). SBI calculations were based on seafloor image datasets from eight stations that reflected different environmental conditions in the north‐western Pacific (e.g., chlorophyll a, silicate). To calculate SBI, we characterized the area occupied by all different types of traces (i.e., lebensspuren) related to epibenthic bioturbation, trace makers, and their ingested sediment thickness. Our results showed a weak negative correlation between organic matter and SBI. This relationship contrast with the traditionally held view on vertical bioturbation intensity, where a dominant positive correlation is expected. It is demonstrated that lebensspuren morphotypes contributed differently to SBI. Not all morphotypes—and, by extension, their corresponding trace makers—are equally controlled by the same environmental factors. This investigation does not dismiss the importance of organic matter content, but emphasizes the importance of other environmental variables that need to be considered when determining the long‐term relation between epibenthic fauna and bioturbation intensity. Finally, we emphasize the importance of characterizing horizontal bioturbation for approaching global biogeochemical cycles and conservational strategies.

Funder

Alexander von Humboldt-Stiftung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3