Influence of Potamogeton crispus harvesting on phosphorus composition of Lake Yimeng

Author:

Wang Lizhi,Wu Xiyuan,Song Hongli,An Juan,Dong Bin,Wu Yuanzhi,Wang Yun,Li Bao,Liu Qianjin,Yu Wanni

Abstract

AbstractHarvesting is an important method used to control the overproduction of Potamogeton crispus in lakes. A three-year comparative field study was performed in a eutrophic lake (harvested area) and its connected lake (non-harvested area) to determine the effects of harvesting on the phosphorus (P) composition and environmental factors in the water and sediment. Results revealed that harvesting significantly reduced the dissolved total P and dissolved organic P (DOP) and increased the alkaline phosphatase activity and particulate P (PP) in the water. No significant differences were detected in the water total P (TP), soluble reactive P, chlorophyll-a, pH, and dissolved oxygen between the harvested and non-harvested areas. Sediment TP and organic P (OP) were significantly reduced in the harvested area. Harvesting changed the P composition in the water. In the non-harvested area, P was mainly formed by DOP (40%) in the water body, while in the harvested area, PP was the main water component (47%). Harvesting increased the proportion of inorganic P (IP) in the sediment and decreased the proportion of OP. In the water, the IP to TP ratio in the non-harvested and harvested areas were 58.26% and 63.51%, respectively. Our results showed that harvesting changed the P composition in the water and sediment. In the harvesting of submerged vegetation, our results can serve as a reference for the management of vegetation-rich lakes.

Funder

Natural Science Foundation of Shandong Province, China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3