Interspecific Differences in the Effects of Calcium and Phosphorus Coprecipitation Induced by Submerged Plants on the Water-to-Phosphorus Cycle

Author:

Wang Heyun1,Zhang Runlong1,Chen Qi1,Chen Kuang1,Hu Rui1

Affiliation:

1. Key Laboratory of Intelligent Health Perception and Ecological Restoration of River and Lake, Ministry of Education, Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

Abstract

The effects of submerged plant-induced calcium and phosphorus coprecipitation on the phosphorus cycle in aquatic environments and interspecific differences are still unclear. Herein, we selected Ceratophyllum demersum L. and Potamogeton crispus L. to construct a sediment–water-submerged plant system. We examined how phosphorus concentrations in the water, sediment, and plant ash changed over time with different phosphorus and calcium treatments and explored the effects of photosynthesis-induced calcium and phosphorus coprecipitation on water’s phosphorus cycle and variations between different submerged plant species. The main results were as follows: (1) The phosphorus reduction in the P. crispus system was less than that in the C. demersum system. (2) P. crispus had higher total ash phosphorus (TAP) values than C. demersum. (3) The sediment total phosphorus (STP) and its fractions with P. crispus were most affected by phosphorus concentration while those with C. demersum were most affected by time. Overall, the two submerged species exhibited different calcium and phosphorus coprecipitation levels and had distinct effects on the water-to-phosphorus cycle. When submerged plants are introduced to reduce and stabilize the phosphorus levels, plant interspecific differences in their induced calcium and phosphorus coprecipitation on water and phosphorus cycling must be fully assessed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3