Comparative study of heat and mass transfer of generalized MHD Oldroyd-B bio-nano fluid in a permeable medium with ramped conditions

Author:

Wang Fuzhang,Rehman Sadique,Bouslimi Jamel,Khaliq Hammad,Qureshi Muhammad Imran,Kamran Muhammad,Alharbi Abdulaziz N.,Ahmad Hijaz,Farooq Aamir

Abstract

AbstractThis article aims to investigate the heat and mass transfer of MHD Oldroyd-B fluid with ramped conditions. The Oldroyd-B fluid is taken as a base fluid (Blood) with a suspension of gold nano-particles, to make the solution of non-Newtonian bio-magnetic nanofluid. The surface medium is taken porous. The well-known equation of Oldroyd-B nano-fluid of integer order derivative has been generalized to a non-integer order derivative. Three different types of definitions of fractional differential operators, like Caputo, Caputo-Fabrizio, Atangana-Baleanu (will be called later as $$C,CF,AB$$ C , C F , A B ) are used to develop the resulting fractional nano-fluid model. The solution for temperature, concentration, and velocity profiles is obtained via Laplace transform and for inverse two different numerical algorithms like Zakian’s, Stehfest’s are utilized. The solutions are also shown in tabular form. To see the physical meaning of various parameters like thermal Grashof number, Radiation factor, mass Grashof number, Schmidt number, Prandtl number etc. are explained graphically and theoretically. The velocity and temperature of nanofluid decrease with increasing the value of gold nanoparticles, while increase with increasing the value of both thermal Grashof number and mass Grashof number. The Prandtl number shows opposite behavior for both temperature and velocity field. It will decelerate both the profile. Also, a comparative analysis is also presented between ours and the existing findings.

Funder

Taif University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3