Magnetic Field, Variable Thermal Conductivity, Thermal Radiation, and Viscous Dissipation Effect on Heat and Momentum of Fractional Oldroyd-B Bio Nano-Fluid within a Channel

Author:

Kaleem Muhammad Madssar,Usman Muhammad,Asjad Muhammad ImranORCID,Eldin Sayed M.ORCID

Abstract

This study deals with the analysis of the heat and velocity profile of the fractional-order Oldroyd-B bio-nanofluid within a bounded channel. The study has a wide range of scope in modern fields of basic science such as medicine, the food industry, electrical appliances, nuclear as well as industrial cooling systems, reducing pollutants, fluids used in the brake systems of vehicles, etc. Oldroyd-B fluid is taken as a bio-nanofluid composed of base fluid (blood) and copper as nanoparticles. Using the fractional-order Oldroyd-B parameter, the governing equation is generalized from an integer to a non-integer form. A strong approach, i.e., a finite difference scheme, is applied to discretize the model, because the fractional approach can well address the physical phenomena and memory effect of the flow regime. Therefore, a Caputo fractional differentiation operator is used for the purpose. The transformations for the channel flow are utilized to transfigure the fractional-order partial differential equations (PDEs) into non-dimension PDEs. The graphical outcomes for non-integer ordered Oldroyd-B bio-nanofluid dynamics and temperature profiles are navigated using the numerical technique. These results are obtained under some very important physical conditions applied as a magnetic field effect, variable thermal conductivity, permeable medium, and heat source/sink. The results show that the addition of (copper) nanoparticles to (blood) base fluids enhances the thermal conductivity. For a comparative study, the obtained results are compared with the built-in results using the mathematical software MAPLE 2016.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3