Predictive capability evaluation and mechanism of Ce (III) extraction using solvent extraction with Cyanex 572

Author:

Allahkarami Ebrahim,Rezai Bahram,Karri Rama Rao,Mubarak Nabisab Mujawar

Abstract

AbstractOwing to the high toxicity of cerium toward living organisms, it is necessary to remove cerium from aqueous solutions. In this regard, the extraction of cerium (Ce (III)) from nitrate media by Cyanex 572 under different operating conditions was examined in this study. The effect of contact time, pH, extractant concentration, and nitrate ion concentration were investigated to characterize the extraction behavior of cerium and based on these outcomes, an extraction mechanism was suggested. The analysis of infrared spectra of Cyanex 572 before and after the extraction of cerium indicated that cerium extraction was performed via a cation-exchange mechanism. Then, the predictive models based on intelligent techniques [artificial neural network (ANN) and hybrid neural-genetic algorithm (GA-ANN)] were developed to predict the cerium extraction efficiency. The GA-ANN model provided better predictions that resulted higher R2 and lower MSE compared to ANN model for predicting the extraction efficiency of cerium by Cyanex 572. The interactive effects of each process variable on cerium extraction were also investigated systematically. pH was the most influential parameter on cerium extraction, followed by extractant concentration, nitrate ion concentration and contact time. Finally, the separation of cerium from other rare earth elements like La (III), Nd (III), Pr (III), and Y (III) was conducted and observed that the present system provides a better separation of cerium from rare heavy earth than light rare earths.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3