Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater

Author:

Rogers Nicola J.,Franklin Natasha M.,Apte Simon C.,Batley Graeme E.,Angel Brad M.,Lead Jamie R.,Baalousha Mohammed

Abstract

Environmental context. It cannot be assumed that nanomaterials entering aquatic environments will have the same impacts on aquatic biota as their macroscopic particle equivalents. If their toxicities are different, this will have implications for the way in which nanomaterial usage is regulated. Algae, at the bottom of the food chain, are likely to be a sensitive indicator of toxic effects. Understanding the physical and chemical factors controlling nanoparticle toxicity to algae will assist in evaluating their ecological risk. Abstract. In assessing the risks posed by nanomaterials in the environment, the overriding research challenges are to determine if nanomaterials are more toxic than the bulk forms of the same material, and the extent to which toxicity is governed by particle size and reactivity. In this study, the toxicity of nanoparticulate CeO2 (nominally 10–20 nm) to the freshwater alga Pseudokirchneriella subcapitata was compared to the same material at the micron size (nominally <5 μm). Growth inhibition experiments revealed inhibitory concentration values, giving 50% reduction in algal growth rate after 72 h (IC50), of 10.3 ± 1.7 and 66 ± 22 mg L–1 for the nanoparticles and bulk materials respectively. Cells exposed to CeO2 particles were permeable to the DNA-binding dye SYTOX® Green in a concentration-dependent manner indicating damage to the cell membrane. Screening assays to assess the oxidative activity of the particles showed that the light illumination conditions used during standard algal bioassays are sufficient to stimulate photocatalytic activity of CeO2 particles, causing the generation of hydroxyl radicals and peroxidation of a model plant fatty acid. No oxidative activity or lipid peroxidation was observed in the dark. These findings indicate that inhibitory mode of action of CeO2 to P. subcapitata is mediated by a cell-particle interaction causing membrane damage. The effect is most likely photochemically induced and is enhanced for the nanoparticulate form of the CeO2.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3