GaWRDenMap: a quantitative framework to study the local variation in cell–cell interactions in pancreatic disease subtypes

Author:

Krishnan Santhoshi N.,Mohammed ShariqORCID,Frankel Timothy L.,Rao Arvind

Abstract

AbstractSpatial pattern modelling concepts are being increasingly used in capturing disease heterogeneity. Quantification of heterogeneity in the tumor microenvironment is extremely important in pancreatic ductal adenocarcinoma (PDAC), which has been shown to co-occur with other pancreatic diseases and neoplasms with certain attributes that make visual discrimination difficult. In this paper, we propose the GaWRDenMap framework, that utilizes the concepts of geographically weighted regression (GWR) and a density function-based classification model, and apply it to a cohort of multiplex immunofluorescence images from patients belonging to six different pancreatic diseases. We used an internal cohort of 228 patients comprised of 34 Chronic Pancreatitis (CP), 71 PDAC, 70 intraductal papillary mucinous neoplasm (IPMN), 16 mucinous cystic neoplasm (MCN), 29 pancreatic intraductal neoplasia (PanIN) and 8 IPMN-associated PDAC patients. We utilized GWR to model the relationship between epithelial cells and immune cells on a spatial grid. The GWR model estimates were used to generate density signatures which were used in subsequent pairwise classification models to distinguish between any two pairs of disease groups. Image-level, as well as subject-level analysis, were performed. When applied to this dataset, our classification model showed significant discrimination ability in multiple pairwise comparisons, in comparison to commonly used abundance-based metrics, like the Morisita-Horn index. The model was able to best discriminate between CP and PDAC at both the subject- and image-levels. It was also able to reasonably discriminate between PDAC and IPMN. These results point to a potential difference in the spatial arrangement of epithelial and immune cells between CP, PDAC and IPMN, that could be of high diagnostic significance. Further validation on a more comprehensive dataset would be warranted.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3