Towards the characterization of the tumor microenvironment through dictionary learning-based interpretable classification of multiplexed immunofluorescence images

Author:

Krishnan Santhoshi NORCID,Barua SouptikORCID,Frankel Timothy L,Rao Arvind

Abstract

Abstract Objective. Histology image analysis is a crucial diagnostic step in staging and treatment planning, especially for cancerous lesions. With the increasing adoption of computational methods for image analysis, significant strides are being made to improve the performance metrics of image segmentation and classification frameworks. However, many developed frameworks effectively function as black boxes, granting minimal context to the decision-making process. Thus, there is a need to develop methods that offer reasonable discriminatory power and a biologically-informed intuition to the decision-making process. Approach. In this study, we utilized and modified a discriminative feature-based dictionary learning (DFDL) paradigm to generate a classification framework that allows for discrimination between two distinct clinical histologies. This framework allows us (i) to discriminate between 2 clinically distinct diseases or histologies and (ii) provides interpretable group-specific representative dictionary image patches, or ‘atoms’, generated during classifier training. This implementation is performed on multiplexed immunofluorescence images from two separate patient cohorts- a pancreatic cohort consisting of cancerous and non-cancerous tissues and a metastatic non-small cell lung cancer (mNSCLC) cohort of responders and non-responders to an immunotherapeutic treatment regimen. The analysis was done at both the image-level and subject-level. Five cell types were selected, namely, epithelial cells, cytotoxic lymphocytes, antigen presenting cells, HelperT cells, and T-regulatory cells, as our phenotypes of interest. Results. We showed that DFDL had significant discriminant capabilities for both the pancreatic pathologies cohort (subject-level AUC-0.8878) and the mNSCLC immunotherapy response cohort (subject-level AUC-0.7221). The secondary analysis also showed that more than 50% of the obtained dictionary atoms from the classifier contained biologically relevant information. Significance. Our method shows that the generated dictionary features can help distinguish patients presenting two different histologies with strong sensitivity and specificity metrics. These features allow for an additional layer of model interpretability, a highly desirable element in clinical applications for identifying novel biological phenomena.

Funder

Nvidia

National Institutes of Health

Brain Tumor SPORE

University of Michigan

University of Texas MD Anderson Cancer Center

Center for Radiation Oncology

National Cancer Institute

American Cancer Society

NCI

CCSG Bioinformatics Shared Resource 5

Agilent Technologies

NIH NCI U01

Cancer Prevention and Research Institute of Texas

University of Michigan Precision Health

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3