PV to reduce evaporative losses in the channels of the São Francisco’s River water transposition project

Author:

Stiubiener Uri,de Freitas Adriano Gomes,Heilala Janne,Fuser Igor

Abstract

AbstractOpen water transposition channels in hot and arid regions, like those in the São Francisco River Integration Project (PISF) in Brazil, suffer significant water losses through evaporation. This paper proposes covering these channels with photovoltaic (PV) panels to reduce evaporation while simultaneously generating clean energy. The research aims to quantify water savings and energy generation potential across all channel lengths and assess whether the generated solar power can substitute grid electricity for powering the transposition pumps during peak hours, thereby enhancing energy efficiency. This study analyzed the state-of-the-art of PV generation and calculated their solar potential. Identified the specific characteristics of PISF channels and watercourses considering the regional geography, meteorology, irradiation, and social peculiarities. And, finally, assessed the feasibility of covering the watercourses with solar panels. The results reveal that covering all current PISF channels with PV panels could save up to 25,000 cubic meters of water per day, significantly contributing to water security and improving the quality of life for the local population. Additionally, the project could generate 1200 gigawatt-hours of electricity annually, meeting the energy demands of the transposition pumps during peak hours and promoting energy efficiency within the project. This research paves the way for utilizing PV technology to address water scarcity challenges and enhance the sustainability of water infrastructure projects in arid regions worldwide.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3