Application of machine learning methods for the prediction of true fasting status in patients performing blood tests

Author:

Chang Shih-Ni,Hsiao Ya-Luan,Lin Che-Chen,Sun Chuan-Hu,Chen Pei-Shan,Wu Min-Yen,Chen Sheng-Hsuan,Chiang Hsiu-Yin,Hsiao Chiung-Tzu,King Emily K.,Chang Chun-Min,Kuo Chin-Chi

Abstract

AbstractThe fasting blood glucose (FBG) values extracted from electronic medical records (EMR) are assumed valid in existing research, which may cause diagnostic bias due to misclassification of fasting status. We proposed a machine learning (ML) algorithm to predict the fasting status of blood samples. This cross-sectional study was conducted using the EMR of a medical center from 2003 to 2018 and a total of 2,196,833 ontological FBGs from the outpatient service were enrolled. The theoretical true fasting status are identified by comparing the values of ontological FBG with average glucose levels derived from concomitant tested HbA1c based on multi-criteria. In addition to multiple logistic regression, we extracted 67 features to predict the fasting status by eXtreme Gradient Boosting (XGBoost). The discrimination and calibration of the prediction models were also assessed. Real-world performance was gauged by the prevalence of ineffective glucose measurement (IGM). Of the 784,340 ontologically labeled fasting samples, 77.1% were considered theoretical FBGs. The median (IQR) glucose and HbA1c level of ontological and theoretical fasting samples in patients without diabetes mellitus (DM) were 94.0 (87.0, 102.0) mg/dL and 5.6 (5.4, 5.9)%, and 92.0 (86.0, 99.0) mg/dL and 5.6 (5.4, 5.9)%, respectively. The XGBoost showed comparable calibration and AUROC of 0.887 than that of 0.868 in multiple logistic regression in the parsimonious approach and identified important predictors of glucose level, home-to-hospital distance, age, and concomitantly serum creatinine and lipid testing. The prevalence of IGM dropped from 27.8% based on ontological FBGs to 0.48% by using algorithm-verified FBGs. The proposed ML algorithm or multiple logistic regression model aids in verification of the fasting status.

Funder

Ministry of Science and Technology, Taiwan

China Medical University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3