Artificial Neural Networks Solve Musical Problems With Fourier Phase Spaces

Author:

Dawson Michael R. W.,Perez Arturo,Sylvestre Sara

Abstract

AbstractHow does the brain represent musical properties? Even with our growing understanding of the cognitive neuroscience of music, the answer to this question remains unclear. One method for conceiving possible representations is to use artificial neural networks, which can provide biologically plausible models of cognition. One could train networks to solve musical problems, and then study how these networks encode musical properties. However, researchers rarely examine network structure in detail because networks are difficult to interpret, and because many assume that networks capture informal or subsymbolic properties. Here we report very high correlations between network connection weights and discrete Fourier phase spaces used to represent musical sets. This is remarkable because there is no clear mathematical relationship between network learning rules and discrete Fourier analysis. That networks discover Fourier phase spaces indicates that these spaces have an important role to play outside of formal music theory. Finding phase spaces in networks raises the strong possibility that Fourier components are possible codes for musical cognition.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference28 articles.

1. Deutsch, D. The Psychology Of Music. 2nd edn, (Academic Press, 1999).

2. Krumhansl, C. L. Cognitive Foundations Of Musical Pitch. (Oxford University Press, 1990).

3. Sloboda, J. A. The Musical Mind: The Cognitive Psychology Of Music. (Oxford University Press, 1985).

4. Abbott, A. Neurobiology: Music, maestro, please! Nature 416, 12–14, https://doi.org/10.1038/416012a (2002).

5. Peretz, I. & Zatorre, R. J. The Cognitive Neuroscience Of Music. (Oxford University Press, 2003).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3