How Do Artificial Neural Networks Classify Musical Triads? A Case Study in Eluding Bonini's Paradox

Author:

Perez Arturo1,Ma Helen L.1,Zawaduk Stephanie1,Dawson Michael R. W.1

Affiliation:

1. Department of Psychology University of Alberta

Abstract

AbstractHow might artificial neural networks (ANNs) inform cognitive science? Often cognitive scientists use ANNs but do not examine their internal structures. In this paper, we use ANNs to explore how cognition might represent musical properties. We train ANNs to classify musical chords, and we interpret network structure to determine what representations ANNs discover and use. We find connection weights between input units and hidden units can be described using Fourier phase spaces, a representation studied in musical set theory. We find the total signal coming through these weighted connection weights is a measure of the similarity between two Fourier structures: the structure of the hidden unit's weights and the structure of the stimulus. This is surprising because neither of these Fourier structures is computed by the hidden unit. We then show how output units use such similarity measures to classify chords. However, we also find different types of units—units that use different activation functions—use this similarity measure very differently. This result, combined with other findings, indicates that while our networks are related to the Fourier analysis of musical sets, they do not perform Fourier analyses of the kind usually described in musical set theory. Our results show Fourier representations of music are not limited to musical set theory. Our results also suggest how cognitive psychologists might explore Fourier representations in musical cognition. Critically, such theoretical and empirical implications require researchers to understand how network structure converts stimuli into responses.

Publisher

Wiley

Subject

Artificial Intelligence,Cognitive Neuroscience,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3