Conductive Highly Filled Suspensions for an Electrochemical Dispensing Approach to Pattern Full-Area Thin Metal Layers by Physical Vapour Deposition

Author:

Gensowski Katharina,Tepner Sebastian,Schweigert Sebastian,Clement Florian,Kamp Mathias,Pospischil Maximilian,Bartsch Jonas

Abstract

AbstractThis paper presents a systematic approach for the development of highly filled suspensions used for an electrochemical dispensing approach. Electrochemical dispensing is an alternative structuring process to locally pattern PVD full-area thin metal layers with the goal to create contacts on solar cells or circuit boards by anodic metal dissolution. Achieving a narrow patterned line width requires a dispensing paste with a high yield stress, a small particle size distribution and a good electrical conductivity. Therefore this work focuses on the formulation and characterization of dispensing pastes in terms of their rheological and electrical properties and their particle size distribution. Furthermore, the printing performance is evaluated in dispensing experiments. In this study, samples with a yield stress above 5000 Pa and an average particle size below 0.4 µm were produced, resulting in dispensed line widths below 100 µm with a high aspect ratio above 0.6. The lack of electrical conductivity was solved by adding KCl solution to the paste, which will add to the ionic conductivity of the NaNO3 basis paste formulation. With this approach, printed line widths down to 115 µm and etched line widths below 90 µm at high aspect ratio were achieved on 50 nm aluminum layers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3