Fractal dimension of particle-size distribution and their relationships with alkalinity properties of soils in the western Songnen Plain, China

Author:

Bai Yufeng,Qin Yan,Lu Xinrui,Zhang Jitao,Chen Guoshuang,Li Xiujun

Abstract

AbstractThe purpose of this study was to identify the fractal dimension and their relationships with alkalinity properties of soils, and to evaluate the potential of fractal dimension as an indicator of alkalinity properties of soil. Six soils with an increasing salinity (electrical conductivity was 0.09, 0.18, 0.62, 0.78, 1.57 and 1.99 dS m−1, respectively) were selected from the western part of the Songnen Plain (China). Salt content, exchangeable sodium percentage, sodium adsorption ratio and other properties of the soils were determined and the soil particle-size distribution (0–2000 μm) was measured using a laser diffraction particle size analyser. Our results show that the overall fractal dimension of the selected soils ranged from 2.35 to 2.60. A linear regression analysis showed a significant negative correlation between fractal dimension and the amount of coarse sand and fine sand (r =  − 0.5452, P < 0.05 and r =  − 0.8641, P < 0.01, respectively), and a significant positive correlation with silt and clay (r = 0.9726, P < 0.01 and r = 0.9526, P < 0.01, respectively). Thus, soils with higher silt and clay content have higher fractal dimension values. Strong linear relationships between fractal dimension and salt content (P < 0.05), in particular a very significant positive relationship with HCO3 (P < 0.01), also exist. It is therefore possible to conclude that a soil’s fractal dimension could serve as a potential indicator of soil alkalization and the variability in alkaline soil texture.

Funder

the National Natural Science Foundation of China

the National Key Research

the Key Research Programme of the Chinese Academy of Science

the Construction and Demonstration of the Typical Rural Green Development Model

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3