Effect of Muddy Water Characteristics on Infiltration Laws and Stratum Compactum Soil Particle Composition under Film Hole Irrigation

Author:

Peng Youliang1,Fei Liangjun1ORCID,Xue Renming1,Shen Fangyuan1,Zhen Runqiao1,Wang Qian1

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

Abstract

To investigate the impact of sediment on water infiltration and soil structure under muddy water irrigation conditions, indoor muddy water film hole infiltration experiments were conducted. Four different muddy water sediment concentrations (3%, 6%, 9%, 12%) and four typical sediment particle size distributions (which were quantified by the physical clay content with a particle size of less than 0.01 mm, d0.01: 9.13%, 16.46%, 27.34%, 44.02%) were employed to examine how muddy water properties affect infiltration law and the stratum compactum soil particle composition under film hole irrigation. The results showed that as the muddy water sediment concentration and physical clay content increased, the wetting front migration distance, cumulative infiltration amount, and soil water content gradually decreased simultaneously. The Kostiakov infiltration model effectively captured the changes in soil water infiltration during muddy water film hole irrigation, exhibiting a strong fit with a high coefficient of determination (R2 > 0.9). With higher muddy water sediment concentration, the deposition layer thickness increases within the same infiltration time. Conversely, higher physical clay content leads to a decrease in deposition layer thickness. The characteristics of the muddy water have a significant impact on the particle composition of the soil in the stratum compactum caused by film hole irrigation. The deposition layer has a lower relative content of fine soil particles compared to muddy water, but this content increases with higher muddy water sediment concentration and physical clay content. In the stranded layer soil, fine particles have a higher relative content than the original soil. Fine particle content increases notably with higher muddy water sediment concentration and physical clay content. The stranded layer soil particles exhibit a higher fractal dimension than the original soil, and as the infiltrated soil layer depth increases, the soil fractal dimension decreases until it matches the original soil. The fractal dimension increased with the increase in muddy water sediment concentration and physical clay content in muddy water irrigation conditions under the same soil layer depth. This research findings could serve as a theoretical foundation for understanding soil water movement under muddy water irrigation conditions.

Funder

National Natural Science Foundation of China

Science and technology planning project of the Shaanxi Provincial Department of water resources

Doctoral Dissertations Innovation Fund of Xi’an University of Technology, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3