Author:
Otsuka Kuniaki,Cornelissen Germaine,Furukawa Satoshi,Shibata Koichi,Kubo Yutaka,Mizuno Koh,Aiba Tatsuya,Ohshima Hiroshi,Mukai Chiaki
Abstract
AbstractThe intrinsic cardiovascular regulatory system (β, 0.00013–0.02 Hz) did not adapt to microgravity after a 6-month spaceflight. The infraslow oscillation (ISO, 0.01–0.10 Hz) coordinating brain dynamics via thalamic astrocytes plays a key role in the adaptation to novel environments. We investigate the adaptive process of a healthy astronaut during a 12-month-long spaceflight by analyzing heart rate variability (HRV) in the LF (0.01–0.05 Hz) and MF1 (0.05–0.10 Hz) bands for two consecutive days on four occasions: before launch, at 1-month (ISS01) and 11-month (ISS02) in space, and after return to Earth. Alteration of β during ISS01 improved during ISS02 (P = 0.0167). During ISS01, LF and MF1 bands, reflecting default mode network (DMN) activity, started to increase at night (by 43.1% and 32.0%, respectively), when suprachiasmatic astrocytes are most active, followed by a 25.9% increase in MF1-band throughout the entire day during ISS02, larger at night (47.4%) than during daytime. Magnetic declination correlated positively with β during ISS01 (r = 0.6706, P < 0.0001) and ISS02 (r = 0.3958, P = 0.0095). Magnetic fluctuations may affect suprachiasmatic astrocytes, and the DMN involving ISOs and thalamic astrocytes may then be activated, first at night, then during the entire day, a mechanism that could perhaps promote an anti-aging effect noted in other investigations.
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献