FIT calculator: a multi-risk prediction framework for medical outcomes using cardiorespiratory fitness data

Author:

Elshawi Radwa,Sakr Sherif,Al-Mallah Mouaz H.,Keteyian Steven J.,Brawner Clinton A.,Ehrman Jonathan K.

Abstract

AbstractAccurately predicting patients' risk for specific medical outcomes is paramount for effective healthcare management and personalized medicine. While a substantial body of literature addresses the prediction of diverse medical conditions, existing models predominantly focus on singular outcomes, limiting their scope to one disease at a time. However, clinical reality often entails patients concurrently facing multiple health risks across various medical domains. In response to this gap, our study proposes a novel multi-risk framework adept at simultaneous risk prediction for multiple clinical outcomes, including diabetes, mortality, and hypertension. Leveraging a concise set of features extracted from patients' cardiorespiratory fitness data, our framework minimizes computational complexity while maximizing predictive accuracy. Moreover, we integrate a state-of-the-art instance-based interpretability technique into our framework, providing users with comprehensive explanations for each prediction. These explanations afford medical practitioners invaluable insights into the primary health factors influencing individual predictions, fostering greater trust and utility in the underlying prediction models. Our approach thus stands to significantly enhance healthcare decision-making processes, facilitating more targeted interventions and improving patient outcomes in clinical practice. Our prediction framework utilizes an automated machine learning framework, Auto-Weka, to optimize machine learning models and hyper-parameter configurations for the simultaneous prediction of three medical outcomes: diabetes, mortality, and hypertension. Additionally, we employ a local interpretability technique to elucidate predictions generated by our framework. These explanations manifest visually, highlighting key attributes contributing to each instance's prediction for enhanced interpretability. Using automated machine learning techniques, the models simultaneously predict hypertension, mortality, and diabetes risks, utilizing only nine patient features. They achieved an average AUC of 0.90 ± 0.001 on the hypertension dataset, 0.90 ± 0.002 on the mortality dataset, and 0.89 ± 0.001 on the diabetes dataset through tenfold cross-validation. Additionally, the models demonstrated strong performance with an average AUC of 0.89 ± 0.001 on the hypertension dataset, 0.90 ± 0.001 on the mortality dataset, and 0.89 ± 0.001 on the diabetes dataset using bootstrap evaluation with 1000 resamples.

Funder

This work was supported by the project "Increasing the knowledge intensity of Ida-Viru entrepreneurship" co-funded by the European Union.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating current assessment techniques of cardiorespiratory fitness;Expert Review of Cardiovascular Therapy;2024-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3