Interpretable Local Concept-based Explanation with Human Feedback to Predict All-cause Mortality

Author:

EL Shawi Radwa,Al-Mallah Mouaz H.

Abstract

Machine learning models are incorporated in different fields and disciplines in which some of them require a high level of accountability and transparency, for example, the healthcare sector. With the General Data Protection Regulation (GDPR), the importance for plausibility and verifiability of the predictions made by machine learning models has become essential. A widely used category of explanation techniques attempts to explain models’ predictions by quantifying the importance score of each input feature. However, summarizing such scores to provide human-interpretable explanations is challenging. Another category of explanation techniques focuses on learning a domain representation in terms of high-level human-understandable concepts and then utilizing them to explain predictions. These explanations are hampered by how concepts are constructed, which is not intrinsically interpretable. To this end, we propose Concept-based Local Explanations with Feedback (CLEF), a novel local model agnostic explanation framework for learning a set of high-level transparent concept definitions in high-dimensional tabular data that uses clinician-labeled concepts rather than raw features. CLEF maps the raw input features to high-level intuitive concepts and then decompose the evidence of prediction of the instance being explained into concepts. In addition, the proposed framework generates counterfactual explanations, suggesting the minimum changes in the instance’s concept based explanation that will lead to a different prediction. We demonstrate with simulated user feedback on predicting the risk of mortality. Such direct feedback is more effective than other techniques, that rely on hand-labelled or automatically extracted concepts, in learning concepts that align with ground truth concept definitions.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3