Abstract
Abstract
Carbohydrate active enzymes are classified in databases based on sequence and structural similarity. However, their function can vary considerably within a similarity-based enzyme family, which makes biochemical characterisation indispensable to unravel their physiological role and to arrive at a meaningful annotation of the corresponding genes. In this study, we biochemically characterised the four related enzymes Tm_Ram106B, Tn_Ram106B, Cb_Ram106B and Ts_Ram106B from the thermophilic bacteria Thermotoga maritima MSB8, Thermotoga neapolitana Z2706-MC24, Caldicellulosiruptor bescii DSM 6725 and Thermoclostridium stercorarium DSM 8532, respectively, as α-l-rhamnosidases. Cobalt, nickel, manganese and magnesium ions stimulated while EDTA and EGTA inhibited all four enzymes. The kinetic parameters such as Km, Vmax and kcat were about average compared to other rhamnosidases. The enzymes were inhibited by rhamnose, with half-maximal inhibitory concentrations (IC50) between 5 mM and 8 mM. The α-l-rhamnosidases removed the terminal rhamnose moiety from the rutinoside in naringin, a natural flavonone glycoside. The Thermotoga sp. enzymes displayed the highest optimum temperatures and thermostabilities of all rhamnosidases reported to date. The four thermophilic and divalent ion-dependent rhamnosidases are the first biochemically characterised orthologous enzymes recently assigned to glycoside hydrolase family 106.
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic acids research 42, D490–D495 (2014).
2. Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proceedings of the National Academy of Sciences 92, 7090–7094 (1995).
3. Li, B., Ji, Y., Li, Y. & Ding, G. Characterization of a glycoside hydrolase family 78 α-l-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 and identification of functional residues. 3 Biotech 8, 120 (2018).
4. Yadav, P., Chauhan, A. K. & Singh, S. P. α-l-rhamnosidase. Sources, production, purification and characterization of the debittering enzyme. International Journal of Biotechnology and Research 7, 2249–6858 (2017).
5. Busto, M. D., Meza, V., Ortega, N. & Perez-Mateos, M. Immobilization of naringinase from Aspergillus niger CECT 2088 in poly (vinyl alcohol) cryogels for the debittering of juices. Food chemistry 104, 1177–1182 (2007).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献