Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury

Author:

Kokkotis Christos,Moustakidis Serafeim,Tsatalas Themistoklis,Ntakolia Charis,Chalatsis Georgios,Konstadakos Stylianos,Hantes Michael E.,Giakas Giannis,Tsaopoulos Dimitrios

Abstract

AbstractAnterior cruciate ligament (ACL) deficient and reconstructed knees display altered biomechanics during gait. Identifying significant gait changes is important for understanding normal and ACL function and is typically performed by statistical approaches. This paper focuses on the development of an explainable machine learning (ML) empowered methodology to: (i) identify important gait kinematic, kinetic parameters and quantify their contribution in the diagnosis of ACL injury and (ii) investigate the differences in sagittal plane kinematics and kinetics of the gait cycle between ACL deficient, ACL reconstructed and healthy individuals. For this aim, an extensive experimental setup was designed in which three-dimensional ground reaction forces and sagittal plane kinematic as well as kinetic parameters were collected from 151 subjects. The effectiveness of the proposed methodology was evaluated using a comparative analysis with eight well-known classifiers. Support Vector Machines were proved to be the best performing model (accuracy of 94.95%) on a group of 21 selected biomechanical parameters. Neural Networks accomplished the second best performance (92.89%). A state-of-the-art explainability analysis based on SHapley Additive exPlanations (SHAP) and conventional statistical analysis were then employed to quantify the contribution of the input biomechanical parameters in the diagnosis of ACL injury. Features, that would have been neglected by the traditional statistical analysis, were identified as contributing parameters having significant impact on the ML model’s output for ACL injury during gait.

Funder

Postgraduate Program of Study “Military Fitness & Wellbeing”, School of Physical Education, Sports Science, University of Thessaly, Greece

OACTIVE

SafeACL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3