Novel computational and drug design strategies for inhibition of human papillomavirus-associated cervical cancer and DNA polymerase theta receptor by Apigenin derivatives

Author:

Akash Shopnil,Bayıl Imren,Hossain Md. Saddam,Islam Md. Rezaul,Hosen Md. Eram,Mekonnen Amare Bitew,Nafidi Hiba-Allah,Bin Jardan Yousef A.,Bourhia Mohammed,Bin Emran Talha

Abstract

AbstractThe present study deals with the advanced in-silico analyses of several Apigenin derivatives to explore human papillomavirus-associated cervical cancer and DNA polymerase theta inhibitor properties by molecular docking, molecular dynamics, QSAR, drug-likeness, PCA, a dynamic cross-correlation matrix and quantum calculation properties. The initial literature study revealed the potent antimicrobial and anticancer properties of Apigenin, prompting the selection of its potential derivatives to investigate their abilities as inhibitors of human papillomavirus-associated cervical cancer and DNA polymerase theta. In silico molecular docking was employed to streamline the findings, revealing promising energy-binding interactions between all Apigenin derivatives and the targeted proteins. Notably, Apigenin 4′-O-Rhamnoside and Apigenin-4′-Alpha-l-Rhamnoside demonstrated higher potency against the HPV45 oncoprotein E7 (PDB ID 2EWL), while Apigenin and Apigenin 5-O-Beta-d-Glucopyranoside exhibited significant binding energy against the L1 protein in humans. Similarly, a binding affinity range of − 7.5 kcal/mol to − 8.8 kcal/mol was achieved against DNA polymerase theta, indicating the potential of Apigenin derivatives to inhibit this enzyme (PDB ID 8E23). This finding was further validated through molecular dynamic simulation for 100 ns, analyzing parameters such as RMSD, RMSF, SASA, H-bond, and RoG profiles. The results demonstrated the stability of the selected compounds during the simulation. After passing the stability testing, the compounds underwent screening for ADMET, pharmacokinetics, and drug-likeness properties, fulfilling all the necessary criteria. QSAR, PCA, dynamic cross-correlation matrix, and quantum calculations were conducted, yielding satisfactory outcomes. Since this study utilized in silico computational approaches and obtained outstanding results, further validation is crucial. Therefore, additional wet-lab experiments should be conducted under in vivo and in vitro conditions to confirm the findings.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference69 articles.

1. Poniewierza, P. & Panek, G. Cervical cancer prophylaxis—State-of-the-art and perspectives. Healthcare 10, 1325 (2022).

2. Rahib, L., Wehner, M. R., Matrisian, L. M. & Nead, K. T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open 4, e214708–e214708 (2021).

3. Chan, C. K., Aimagambetova, G., Ukybassova, T., Kongrtay, K. & Azizan, A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination—Review of current perspectives. J. Oncol. 2019, 1–11 (2019).

4. Jalil, A. A. T. Epidemiology of Cervical cancer and high risk of human papilloma virus in patient. ББК 28.6 З, 85, 7.

5. Kanda, T. & Kukimoto, I. Human papillomavirus and cervical cancer. Uirusu 56, 219–230 (2006).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3