Assessment of machine learning models trained by molecular dynamics simulations results for inferring ethanol adsorption on an aluminium surface

Author:

Shahbazi Fatemeh,Esfahani Mohammad Nasr,Keshmiri Amir,Jabbari Masoud

Abstract

AbstractMolecular dynamics (MD) simulations can reduce our need for experimental tests and provide detailed insight into the chemical reactions and binding kinetics. There are two challenges while dealing with MD simulations: one is the time and length scale limitations, and the latter is efficiently processing the massive amount of data resulting from the MD simulations and generating the proper reaction rates. In this work, we evaluated the use of regression machine learning (ML) methods to solve these two challenges by developing a framework for ethanol adsorption on an Aluminium (Al) slab. This framework comprises three main stages: first, an all-atom molecular dynamics model; second, ML regression models; and third, validation and testing. In stage one, the adsorption of ethanol molecules on the Al surface for various temperatures, velocities and concentrations is simulated using the large-scale atomic/molecular massively parallel simulator (LAMMPS) and ReaxFF. The outcome of stage one is utilised for training, testing, and validating the predictive models in stages two and three. We developed and evaluated 28 different ML models for predicting the number of adsorbed molecules over time, including linear regression, support vector machine (SVM), decision trees, ensemble, Gaussian process regression (GPR), neural network (NN) and Bayesian hyper-parameter optimisation models. Based on the results, the Bayesian-based GPR showed the highest accuracy and the lowest training time. The developed model can predict the number of adsorbed molecules for new cases within seconds, while MD simulations take a few weeks. This adsorption rate can then be used in macroscale simulations to tackle the time and length scale limitations. The proposed numerical framework has the potential to be generalised and, therefore, contribute to future low-cost binding reaction estimations, providing a valuable tool for industry and experimentalists.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3