Effect of contact number among graphene nanosheets on the conductivities of tunnels and polymer composites

Author:

Zare Yasser,Kim Tae-Hoon,Gharib Nima,Chang Young-Wook

Abstract

AbstractSimple equations are expressed for tunnel conductivity, tunnel resistance and conductivity of a graphene-filled composite by the number of contacts and interphase part. More specially, the active filler amount is suggested by interphase depth, which changes the contact number. The conductivity of nanocomposite is presented by filler content, filler dimensions, tunneling length and interphase depth. The innovative model is surveyed by the experimented conductivity of real examples. Too, the impacts of numerous issues on the tunnel resistance, tunnel conductivity and conductivity of nanocomposite are discussed to validate the novel equations. The estimates agree with the experimented data and the impacts of several terms on the tunnel resistance, tunnel conductivity and conductivity of system are sensible. Thin and big nanosheets positively affect the nanocomposite’s conductivity, but thick nanosheets improve the tunnel conductivity. High conductivity is found at short tunnels, while the nanocomposite’s conductivity directly depends on the tunneling length. The dissimilar effects of these features on the tunneling properties and conductivity are described.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3