Convenient synthesis of dipeptide structures in solution phase assisted by a thioaza functionalized magnetic nanocatalyst

Author:

Taheri-Ledari RezaORCID,Asl Fereshteh Rasouli,Saeidirad Mahdi,Kashtiaray Amir,Maleki AliORCID

Abstract

AbstractIn this study, a heterogeneous nanocatalyst is presented that is capable to efficiently catalyze the synthetic reactions of amide bond formation between the amino acids. This nanocatalyst which is named Fe3O4@SiO2/TABHA (TABHA stands for thio-aza-bicyclo-hepten amine), was composed of several layers that increased the surface area to be functionalized with 2-aminothiazole rings via Diels–Alder approach. Firstly, various analytic methods such as Fourier-transform infrared (FTIR) and energy-dispersive X-ray (EDX) spectroscopic methods, thermogravimetric analysis (TGA), electron microscopy (EM), and UV–vis diffuse reflectance spectroscopy (UV-DRS) have been used to characterize the desired structure of the Fe3O4@SiO2/TABHA catalyst. Afterward, the application of the presented catalytic system has been studied in the peptide bond formation reactions. Due to the existence of a magnetic core in the structure of the nanocatalyst, the nanoparticles (NPs) could be easily separated from the reaction medium by an external magnet. This special feature has been corroborated by the obtained results from vibrating-sample magnetometer (VSM) analysis that showed 24 emu g−1 magnetic saturation for the catalytic system. Amazingly, a small amount of Fe3O4@SiO2/TABHA particles (0.2 g) has resulted in ca. 90% efficiency in catalyzing the peptide bond formation at ambient temperature, over 4 h. Also, this nanocatalyst has demonstrated an acceptable recycling ability, where ca. 76% catalytic performance has been observed after four recycles. Due to high convenience in the preparation, application, and recyclization processes, and also because of lower cost than the traditional coupling reagents (like TBTU), the presented catalytic system is recommended for the industrial utilization.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3