Advancing Hybrid Nanocatalyst Research: A Python-based Visualization of Similarity Analysis for Interdisciplinary and Sustainable Development

Author:

Gomes Fernando12ORCID,Pal Kaushik3,Maranhão Fabíola1,Zanoni Carlos1,Brandão Daniele2,Colão Michelle2,Silva Gabriel1,Ampah Jeffrey4,Velasco Karine1

Affiliation:

1. Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil

2. Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

3. University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State Hwy, Mohali, Gharuan, Punjab 140413, India

4. School of Mechanical Engineering, Tianjin University, China

Abstract

Background: This study presents a comprehensive analysis of hybrid nanocatalysts, which amalgamate attributes of both heterogeneous and homogeneous catalysts. Aim: To achieve a holistic understanding of the topic, we embarked on a meticulous exploration across multiple databases. Method: The Web of Science repository yielded 239 pertinent documents, while the Scopus database offered a more exhaustive collection of 1,887 documents. Although Google Scholar suggested a staggering 25,000 articles, its unclear selection criteria raised questions about the precision and dependability of its data. Hence, our study primarily relied on the Scopus database to ensure an extensive sample and analytical rigor. Using the Python-boosted visualization of Similarities methodology, we illuminated interconnections among various terminologies, identifying burgeoning areas within hybrid nanocatalyst research. Result: Our findings emphasized the ascending trajectory toward innovating materials with superior properties in hybrid nanocatalysis. This trajectory accentuated the pivotal role of interdisciplinary collaboration and sustainable methodologies. Advanced analytical techniques, notably X-ray diffraction, emerged as quintessential in delineating the nuanced relationship between hybrid nanocatalysts' structural and functional attributes. We also spotlighted Energy-Dispersive X-ray Spectroscopy's capability in fine-tuning hybrid nanocatalysts' properties, enhancing their catalytic efficacy and selectivity. An intriguing trend our study unearthed was the surge in interest toward integrating natural enzymes as potential catalysts within hybrid nanocatalysts, positioning them as beacons for sustainable and cost-efficient catalyst development. Conclusion: By synthesizing these insights, this research underlines the significance of diverse characterization techniques and the ethos of interdisciplinary collaboration. The derived knowledge offers a repository for fellow researchers, guiding further inquiries, especially regarding integrating natural enzymes in hybrid nanocatalyst innovation.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical physics of azo reactive dye adsorption by metal hydroxide sludge for water remediation;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3