Evaluation method for asymmetric uncertainty of quantitative polymerase chain reaction measurements of deoxyribonucleic acids with low copy number

Author:

Ki Unoh,Suzuki Takeru,Nakazawa Satoshi,Yonekawa Yuuki,Watanabe Kazuki,Hashimoto Michie,Hatada Shigeo,Unno Hirotaka

Abstract

AbstractRecently, in food safety and various other fields, qualitative and quantitative gene analysis using real-time polymerase chain reaction (PCR) method has become increasingly popular. The limit of detection (LOD) and quantifiable range for these measurements depends on the range and precision of DNA calibrators’ concentrations. Low-copy-number nucleic acid reference materials with low uncertainty produced by an inkjet system have been developed to allow for precise measurements in a low-copy-number region. However, when using a calibrator with a low copy number near one, the copy number distribution is asymmetric. Consequently, the confidence intervals of estimated copy numbers can include negative values when conventional methods of uncertainty estimation are used. A negative confidence interval is irrelevant in the context of copy number, which is always positive value or zero. Here, we propose a method to evaluate the uncertainty of real-time PCR measurements with representative values and an asymmetric 95% confidence interval. Moreover, we use the proposed method for the actual calculation of uncertainty of real-time PCR measurement results for low-copy-number DNA samples and demonstrate that the proposed method can evaluate the precision of real-time PCR measurements more appropriately in a low-copy-number region.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference30 articles.

1. Mullis, K. B. & Faloona, F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

2. Holst-Jensen, A., Rønning, S. B., Løvseth, A. & Berdal, K. G. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem. 375, 985–993 (2003).

3. ISO 21570:2005. Foodstuffs—Methods of analysis for the detection of genetically modified organisms and derived products—Qualitative nucleic acid based methods. Int. Organ. Stand. (2005).

4. ISO 21571:2005. Foodstuffs—Methods of analysis for the detection of genetically modified organisms and derived products—Nucleic acid extraction. Int. Organ. Stand. (2015).

5. Kuribara, H. et al. Novel reference molecules for quantitation of genetically modified maize and soybean. J. AOAC Int. 85, 1077–1089 (2002).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3