Plasticity in nest site choice behavior in response to hydric conditions in a reptile

Author:

Doody J. Sean,McGlashan Jessica,Fryer Harry,Coleman Lizzy,James Hugh,Soennichsen Kari,Rhind David,Clulow Simon

Abstract

AbstractNatural selection is expected to select for and maintain maternal behaviors associated with choosing a nest site that promotes successful hatching of offspring, especially in animals that do not exhibit parental care such as reptiles. In contrast to temperature effects, we know little about how soil moisture contributes to successful hatching and particularly how it shapes nest site choice behavior in nature. The recent revelation of exceptionally deep nesting in lizards under extreme dry conditions underscored the potential for the hydric environment in shaping the evolution of nest site choice. But if deep nesting is an adaptation to dry conditions, is there a plastic component such that mothers would excavate deeper nests in drier years? We tested this hypothesis by excavating communal warrens of a large, deep-nesting monitor lizard (Varanus panoptes), taking advantage of four wet seasons with contrasting rainfall amounts. We found 75 nests during two excavations, including 45 nests after a 4-year period with larger wet season rainfall and 30 nests after a 4-year period with smaller wet season rainfall. Mothers nested significantly deeper in years associated with drier nesting seasons, a finding best explained as a plastic response to soil moisture, because differences in both the mean and variance in soil temperatures between 1 and 4 m deep are negligible. Our data are novel for reptiles in demonstrating plasticity in maternal behavior in response to hydric conditions during the time of nesting. The absence of evidence for other ground-nesting reptile mothers adjusting nest depth in response to a hydric-depth gradient is likely due to the tradeoff between moisture and temperature with changing depth; most ground-nesting reptile eggs are deposited at depths of ~ 2–25 cm—nesting deeper within or outside of that range of depths to achieve higher soil moisture would also generally create cooler conditions for embryos that need adequate heat for successful development. In contrast, extreme deep nesting in V. panoptes allowed us to disentangle temperature and moisture. Broadly, our data suggest that ground-nesting reptiles can assess soil moisture and respond by adjusting the depth of the nest, but may not, due to the cooling effect of nesting deeper. Our results, within the context of previous work, provide a more complete picture of how mothers can promote hatching success through adjustments in nest site choice behavior.

Funder

Jane Fenwick Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3