Why animals construct helical burrows: Construction vs. post‐construction benefits

Author:

Doody J. Sean1ORCID,Shukla Shivam1,Hasiotis Stephen T.2

Affiliation:

1. Department of Integrative Biology University of South Florida St. Petersburg Florida USA

2. Department of Geology University of Kansas Lawrence Kansas USA

Abstract

AbstractThe extended phenotype of helical burrowing behavior in animals has evolved independently many times since the Cambrian explosion (~540 million years ago [MYA]). A number of hypotheses have been proposed to explain the evolution of helical burrowing in certain taxa, but no study has searched for a general explanation encompassing all taxa. We reviewed helical burrowing in both extant and extinct animals and from the trace fossil record and compiled 10 hypotheses for why animals construct helical burrows, including our own ideas. Of these, six are post‐construction hypotheses—benefits to the creator or offspring, realized after burrow construction—and four are construction hypotheses reflecting direct benefits to the creator during construction. We examine the fit of these hypotheses to a total of 21 extant taxa and ichnotaxa representing 59–184 possible species. Only two hypotheses, antipredator and biomechanical advantage, cannot be rejected for any species (possible in 100% of taxa), but six of the hypotheses cannot be rejected for most species (possible in 86%–100% of taxa): microclimate buffer, reduced falling sediment (soil), anticrowding, and vertical patch. Four of these six are construction hypotheses, raising the possibility that helical burrowing may have evolved without providing post‐construction benefits. Our analysis shows that increased drainage, deposit feeding, microbial farming, and offspring escape cannot explain helical burrowing behavior in the majority of taxa (5%–48%). Overall, the evidence does not support a general explanation for the evolution of helical burrowing in animals. The function and evolution of the helix as an extended phenotype seems to provide different advantages for different taxa in different environments under different physicochemical controls (some traces/tracemakers are discussed in more detail due to their association with body fossils and well‐constrained physicochemical parameters). Although direct tests of many of the hypotheses would be difficult, we nevertheless offer ways to test some of the hypotheses for selected taxa.

Publisher

Wiley

Reference179 articles.

1. Intraspecific diversity of morphological characters of the burrowing scorpion Scorpio maurus palmatus (Ehrenberg, 1828) in Egypt (Arachnida: Scorpionida: Scorpionidae);Abdel‐Nabi I. M.;Serket,2004

2. Food sources of tropical thalassinidean shrimps: a stable‐isotope study;Abed‐Navandi D.;Marine Ecology Progress Series,2005

3. Similar burrow architecture of three arid‐zone scorpion species implies similar ecological function;Adams A. M.;The Science of Nature,2016

4. Some preliminary obsel‐vations on the burrows of Callianassa subterranea (Montagu) (Decapoda: Thalassinidea) from the west coast of Scotland;Atkinson R. J. A.;Journal of Natural History,1990

5. Notice of new gigantic fossils;Barbour I. H.;Science,1892

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3