A new quantum-safe multivariate polynomial public key digital signature algorithm

Author:

Kuang Randy,Perepechaenko Maria,Barbeau Michel

Abstract

AbstractWe propose a new quantum-safe digital signature algorithm called Multivariate Polynomial Public Key Digital Signature (MPPK/DS). The core of the algorithm is based on the modular arithmetic property that for a given element g, greater than equal to two, in a prime Galois field GF(p) and two multivariate polynomials P and Q, if P is equal to Q modulo p-1, then g to the power of P is equal to g to the power of Q modulo p. MPPK/DS is designed to withstand the key-only, chosen-message, and known-message attacks. Most importantly, making secret the element g disfavors quantum computers’ capability to solve the discrete logarithm problem. The security of the MPPK/DS algorithm stems from choosing a prime p associated with the field GF(p), such that p is a sum of a product of an odd prime number q multiplied with a power x of two and one. Given such a choice of a prime, choosing even coefficients of the publicly available polynomials makes it hard to find any private information modulo p-1. Moreover, it makes it exponentially hard to lift the solutions found modulo q to the ring of integers modulo p-1 by properly arranging x and q. However, finding private information modulo the components q and power x of two is an NP-hard problem since it involves solving multivariate equations over the chosen finite field. The time complexity of searching a private key from a public key or signatures is exponential over GF(p). The time complexity of perpetrating a spoofing attack is also exponential for a field GF(p). MPPK/DS can achieve all three NIST security levels with optimized choices of multivariate polynomials and the generalized safe prime p.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel integrated quantum-resistant cryptography for secure scientific data exchange in ad hoc networks;Ad Hoc Networks;2024-11

2. Multivariate Polynomial Public Key Digital Signature Trefoil Knot Algorithm;2024 13th International Conference on Communications, Circuits and Systems (ICCCAS);2024-05-10

3. Integration of a Conjugacy over Non-Commutative Ring in Digital Signature Mechanism;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

4. Improved Encryption Algorithm for Public Wireless Network;Journal of Advances in Information Technology;2024

5. Quantum Entanglement Velocity in Superimposed Spacetime and Related Application;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3