Author:
Kuang Randy,Perepechaenko Maria,Barbeau Michel
Abstract
AbstractWe propose a new quantum-safe digital signature algorithm called Multivariate Polynomial Public Key Digital Signature (MPPK/DS). The core of the algorithm is based on the modular arithmetic property that for a given element g, greater than equal to two, in a prime Galois field GF(p) and two multivariate polynomials P and Q, if P is equal to Q modulo p-1, then g to the power of P is equal to g to the power of Q modulo p. MPPK/DS is designed to withstand the key-only, chosen-message, and known-message attacks. Most importantly, making secret the element g disfavors quantum computers’ capability to solve the discrete logarithm problem. The security of the MPPK/DS algorithm stems from choosing a prime p associated with the field GF(p), such that p is a sum of a product of an odd prime number q multiplied with a power x of two and one. Given such a choice of a prime, choosing even coefficients of the publicly available polynomials makes it hard to find any private information modulo p-1. Moreover, it makes it exponentially hard to lift the solutions found modulo q to the ring of integers modulo p-1 by properly arranging x and q. However, finding private information modulo the components q and power x of two is an NP-hard problem since it involves solving multivariate equations over the chosen finite field. The time complexity of searching a private key from a public key or signatures is exponential over GF(p). The time complexity of perpetrating a spoofing attack is also exponential for a field GF(p). MPPK/DS can achieve all three NIST security levels with optimized choices of multivariate polynomials and the generalized safe prime p.
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Rivest, R. L., Shamir, A. & Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978).
2. Johnson, D., Menezes, A. & Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Security 1, 36–63 (2001).
3. Tan, T. G., Szalachowski, P. & I. Zhou. Sok: Challenges of post-quantum digital signing in real-world applications. Cryptology ePrint Archive, Report 2019/1374 (2019). https://ia.cr/2019/1374.
4. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).
5. Kuang, R., Barbeau, M. & Perepechaenko, M. A new quantum safe multivariate polynomial public key cryptosystem over large prime galois fields. Submitted to Scientific Reports—Nature (2021).
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献