Intercropping kura clover with prairie cordgrass mitigates soil greenhouse gas fluxes

Author:

Abagandura Gandura Omar,Sekaran UdayakumarORCID,Singh Shikha,Singh Jasdeep,Ibrahim Mostafa A.,Subramanian SenthilORCID,Owens Vance N.,Kumar Sandeep

Abstract

AbstractPrairie cordgrass (PCG) (Spartina pectinata Link) has a high tolerance to soil salinity and waterlogging, therefore, it can thrive on marginal lands. Optimizing the nitrogen (N) input is crucial to achieving desirable biomass production of PCG without negatively impacting the environment. Thus, this study was based on the hypothesis that the use of legumes such as kura clover (Trifolium ambiguum M. Bieb.) (KC) as an intercrop with PCG can provide extra N to the crop reducing the additional N fertilizer and mitigating soil surface greenhouse gas (GHG) emissions. Specific objective of the study was to assess the impact of PCG managed with different N rates [0 kg N ha−1 (PCG-0N), 75 kg N ha−1 (PCG-75N), 150 kg N ha−1 (PCG-150N), and 225 kg N ha−1 (PCG-255N)], and PCG intercropped with KC (PCG-KC) on GHG fluxes and biomass yield. The experimental site was established in 2010 in South Dakota under a marginally yielding cropland. The GHG fluxes were measured from 2014 through 2018 growing seasons using the static chamber. Net global warming potential (GWP) was calculated. Data showed that cumulative CH4 and CO2 fluxes were similar for all the treatments over the study period. However, the PCG-KC, PCG-0N, and PCG-75N recorded lower cumulative N2O fluxes (384, 402, and 499 g N ha−1, respectively) than the PCG-150N (644 g N ha−1) and PCG-255N (697 g N ha−1). The PCG-KC produced 85% and 39% higher yield than the PCG-0N in 2016 and 2017, respectively, and similar yield to the other treatments (PCG-75N, PCG-150N, and PCG-255N) in these years. Net GWP was 52% lower for the PCG-KC (112.38 kg CO2-eq ha−1) compared to the PCG-225N (227.78 kg CO2-eq ha−1), but similar to other treatments. Soil total N was 15%% and 13% higher under PCG-KC (3.7 g kg−1) than that under PCG-0N (3.2 g kg−1) and PCG-75N (3.3 g kg−1), respectively. This study concludes that intercropping prairie cordgrass with kura clover can enhance biomass yield and reduce fertilizer-derived N2O emissions and net global warming potential.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3