Effects of Planting Density and Nitrogen Application on Soil Greenhouse Gas Fluxes in the Jujube–Alfalfa Intercropping System in Arid Areas

Author:

Li Tiantian12,Wan Sumei12,Chen Guodong12ORCID,Cui Zhengjun123,Wang Jinbin123ORCID,Fan Zhilong3,Zhai Yunlong12

Affiliation:

1. Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Tarim University, Alaer 843300, China

2. College of Agriculture, Tarim University, Alaer 843300, China

3. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Increasing agricultural yields and reducing greenhouse gas (GHG) emissions are the main themes of agricultural development in the 21st century. This study investigated the yield and GHGs of a jujube–alfalfa intercropping crop, relying on a long-term field location experiment of intercropping in an arid region. The treatments included four planting densities (D1 (210 kg ha−1 sowing rate; six rows), D2 (280 kg ha−1 sowing rate; eight rows), D3 (350 kg ha−1 sowing rate; ten rows)) and four nitrogen levels (N0 (0 kg ha−1), N1 (80 kg ha−1), N2 (160 kg ha−1), and N3 (240 kg ha−1)) in the jujube–alfalfa intercropping system. The results showed that the jujube–alfalfa intercropping system is a the “source” of atmospheric CO2 and N2O, and the “sink” of CH4; the trend of CO2 fluxes was “single peak”, while the trend of N2O and CH4 fluxes was “double peak”, and there was a tendency for their “valley peaks” to become a “mirror” of each another. The magnitude of emissions under the nitrogen level was N3 > N2 > N1 > N0; the content of soil total nitrogen, quick-acting nitrogen, and the global warming potential (GWP) increased with an increase in the amount of nitrogen that was applied, but the pH showed the opposite tendency. The D2N2 treatment increased the total N, quick N, SOC, and SOM content to reduce the alfalfa GHG emission intensity (GHGI) by only 0.061 kg CO2-eq kg−1 compared to the other treatments. D2N2 showed a good balance between yield benefits and environmental benefits. The total D2N2 yield was the most prominent among all treatments, with a 47.64% increase in yield in 2022 compared to the D1N0 treatment. The results showed that the optimization of planting density and N fertilization reduction strategies could effectively improve economic efficiency and reduce net greenhouse gas emissions. In the jujube–alfalfa intercropping system, D2N2 (eight rows planted in one film 160 N = 160 kg ha−1) realized the optimal synergistic effect between planting density and nitrogen application, and the results of this study provide theoretical support for the reduction in GHGs emissions in northwest China without decreasing the yield of alfalfa forage.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

graduate student innovation project of Xinjiang Corps

the Graduate Student Innovation Program of Tarim University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3