Author:
Kim Min-Ju,Park Jun-Woo,Kim Byung Gon,Lee You-Jin,Ha Yoon-Cheol,Lee Sang-Min,Baeg Kang-Jun
Abstract
AbstractInstead of commercial lithium-ion batteries (LIBs) using organic liquid electrolytes, all-solid-state lithium-ion batteries (ASSBs) employing solid electrolytes (SEs) are promising for applications in high-energy–density power applications and electric vehicles due to their potential for improving safety and achieving high capacity. Although remarkable progress in SEs has been achieved and has resulted in high ionic conductivity, which now reaches values comparable to those of liquid electrolytes, the typical use of a slurry process for the fabrication of conventional ASSBs inevitably causes harmful reactions between sulfide materials and polar solvents. Here, we studied the efficient infiltration process of SE slurry into conventional composite LIB electrodes (NCM622) for achieving high-energy-density ASSBs via a scalable solution-based fabrication process. Two methods are proposed to ensure that SE materials are evenly distributed and sufficiently infiltrated into the porous structures of LIB electrodes. The LPSCl SE solutions were effectively infiltrated into the electrodes at higher processing temperatures and the temperature was subsequently optimized at above the boiling point of the ethanol solvent due to the dynamic motion of SE molecules via a convective flow during solvent vaporization. Moreover, the porous LIB composite electrodes with a mixture of active materials of different particle sizes formed and filled capillary pores resulting in a high electrode density. The LPSCl SE-infiltrated NCM622 electrodes that used this strategy could remarkably improve the initial discharge capacity of ASSBs to as high as 177 mAh/g. These ASSBs also showed excellent performance even at high loading values (about 17 mg/cm2), making them competitive with LIBs using conventional liquid electrolytes.
Funder
Korea Electrotechnology Research Institute
National Research Foundation of Korea
MOTIE/KEIT
Publisher
Springer Science and Business Media LLC
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献