PVDF Binder in All-Solid-State Lithium Batteries with NCM/Sulfide/PVDF Cathode, Oxide/PEO SE Layer, and Li-metal Anode

Author:

Kang Byeong-Su,Jeon Se-Hyeon,Park Sang-JunORCID,Song Young-Woong,Lim JinsubORCID,Hong YoungSun,Kim Min-Young,Kim Ho-SungORCID

Abstract

Sulfide-based solid electrolyte such as Li6PS5Cl (LPSCl) is unstable in contact with Li metal electrode due to decomposing to by-product resulting in poor performance. Therefore, the introduction of an interlayer to suppress reactivity is essential. In this study, instead of an interlayer, an oxide/polymer composite electrolyte was applied to suppress side reactions, while a sulfide-based electrolyte was used at the cathode to improve interfacial control between the cathode and the electrolyte. All-solid-state lithium batteries (ASLBs) were prepared by applying sulfide-based solid electrolyte (argyrodite, Li6PS5Cl) including NCM424, polyvinylidene fluoride (PVDF), and Super-P in a composite cathode layer, and a composite solid electrolyte (CSE) layer by mixing an oxide-based solid electrolyte (garnet, Al-doped Li7La3Zr2O12 (LLZO)), polymer (PEO, polyethylene oxide) and lithium metal as the anode. In this study, NCM424 powder was coated with LiNbO3 to prevent chemical reaction with the sulfide electrolyte. As the PVDF binder was applied to the cathode of the ASLB, the discharge capacity of the cell was approximately 163 mAh g−1 at 70 °C, 0.1 C, and 4.2 V cut-off and its capacity retention was 83% after 50 cycles. The effects of the PVDF were evaluated using both pouch-type cells. The capacity and cycle retention are greatly dependent on the PVDF content of the cathode materials and the drying temperature during the fabrication of the cathode. When the cathode with PVDF binder was dried at 130 °C, initial cycling was required for activation of the pouch cell, and it was possible to overcome this by adding a plasticizer.

Funder

Korea Institute of Industrial Technology

National Research Foundation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3