Physicochemical characterization of Pseudomonas stutzeri UFV5 and analysis of its transcriptome under heterotrophic nitrification/aerobic denitrification pathway induction condition

Author:

Silva Lívia Carneiro Fidélis,Lima Helena Santiago,Mendes Tiago Antônio de Oliveira,Sartoratto Adilson,Sousa Maira Paula,de Souza Rodrigo Suhett,de Paula Sérgio Oliveira,de Oliveira Valéria Maia,Silva Cynthia CanedoORCID

Abstract

AbstractBiological ammonium removal via heterotrophic nitrification/aerobic denitrification (HN/AD) presents several advantages in relation to conventional removal processes, but little is known about the microorganisms and metabolic pathways involved in this process. In this study, Pseudomonas stutzeri UFV5 was isolated from an activated sludge sample from oil wastewater treatment station and its ammonium removal via HN/AD was investigated by physicochemical and molecular approaches to better understand this process and optimize the biological ammonium removal in wastewater treatment plants. Results showed that P. stutzeri UFV5 removed all the ammonium in 48–72 hours using pyruvate, acetate, citrate or sodium succinate as carbon sources, C/N ratios 6, 8, 10 and 12, 3–6% salinities, pH 7–9 and temperatures of 20–40 °C. Comparative genomics and PCR revealed that genes encoding the enzymes involved in anaerobic denitrification process are present in P. stutzeri genome, but no gene that encodes enzymes involved in autotrophic nitrification was found. Furthermore, transcriptomics showed that none of the known enzymes of autotrophic nitrification and anaerobic denitrification had their expression differentiated and an upregulation of the biosynthesis machinery and protein translation was observed, besides several genes with unknown function, indicating a non-conventional mechanism involved in HN/AD process.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3