Characteristics of Novel Heterotrophic Nitrification–Aerobic Denitrification Bacteria Bacillus subtilis F4 and Alcaligenes faecalis P4 Isolated from Landfill Leachate Biochemical Treatment System

Author:

Zhang Xuejun1,Xu Peng12,Lou Yajuan3,Liu Yuqi3,Shan Qiantong3,Xiong Yi3,Wei Hua4,Song Jianyang123ORCID

Affiliation:

1. Nanyang Key Laboratory of Water Pollution Control and Solid Waste Resource, Nanyang Institute of Technology, Nanyang 473004, China

2. School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China

3. Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, China

4. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

Abstract

Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria are the key functional microorganisms needed to achieve simultaneous nitrification and denitrification (SND). In this study, 25 strains of HN-AD bacteria were successfully isolated from a stable landfill leachate biochemical treatment system, of which 10 strains belonged to Firmicutes and 15 strains belonged to Proteobacteria. Bacillus subtilis F4 and Alcaligenes faecalis P4 displayed good tolerance at a wide range of ammonia nitrogen (NH4+-N) concentrations. When the C/N ratio was 20, the removal rates of ammonia nitrogen were 90.1% and 89.5%, and the chemical oxygen demand (COD) removal rates were 92.4% and 93.9%, respectively. The napA gene encoding periplasmic nitrate reductase (Nap) and the nirS gene encoding nitrite reductase (Nir) were detected, and nitrogen balance showed assimilation and HN-AD was the main nitrogen metabolism mode in both strains. The use of immobilization materials could increase removal rate of ammonia nitrogen by 21.1% and 29.6%, respectively. The research results of this work can provide theoretical basis and technical support for the practical application of HN-AD bacteria to enhance the treatment of high ammonia nitrogen wastewater with high efficiency and low consumption.

Funder

Scientific and Technological Projects of Henan Province

Doctoral Research Start-up Fund Project of Nanyang Institute of Technology

Interdisciplinary Sciences Project, Nanyang Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3