Dual-functional metalenses for the polarization-controlled generation of focalized vector beams in the telecom infrared

Author:

Vogliardi Andrea,Ruffato GianlucaORCID,Dal Zilio Simone,Bonaldo Daniele,Romanato FilippoORCID

Abstract

AbstractThe availability of static tiny optical devices is mandatory to reduce the complexity of optical paths that typically use dynamic optical components and/or many standard elements for the generation of complex states of light, leading to unprecedented levels of miniaturization and compactness of optical systems. In particular, the design of flat and integrated optical elements capable of multiple vector beams generation with high resolution in the visible and infrared range is very attractive in many fields, from life science to information and communication technology. In this regard, we propose dual-functional transmission dielectric metalenses that act simultaneously on the dynamic and geometric phases in order to manipulate independently right-handed and left-handed circularly polarized states of light and generate focused vector beams in a compact and versatile way. In the specific, starting from the mathematical fundamentals for the compact generation of vector beams using dual-functional optical elements, we provide the numerical algorithms for the computation of metaoptics and apply those techniques to the design and fabrication of silicon metalenses which are able to generate and focus different vector beams in the telecom infrared, depending on the linear polarization state in input. This approach provides new integrated optics for applications in the fields of high-resolution microscopy, optical manipulation, and optical communications, both in the classical and single-photon regimes.

Funder

Italian Presidency of the Council of Ministers

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3