High efficiency independent modulation at dual-wavelength based on Pancharatnam–Berry and propagation phases

Author:

He Minglei,Wu Jiepeng,Chen Haohan,Wang Hao,Wu Xinen,Feng Qianbin,Wu Qiwen1,Wu Xiaosong1,Liu HaiyingORCID,Li Qiang,Wu LijunORCID

Affiliation:

1. Guangzhou Keii Electro Optics Technology Co., Ltd.

Abstract

Metasurfaces capable of controlling multiple wavelengths independently have attracted broad interests these years due to their significance in multi-channel information processing applications. Previous solving strategies include spatial multiplexing or extensive searching for appropriate structures, both of which have their own disadvantageous, such as low efficiency, large computer resource requirement, or time consumption. In this paper, by combining the Pancharatnam–Berry (PB) phase and propagation phase, we propose a strategy to simplify the design complexity in a dual-wavelength metasurface system, in which two simple rectangular-shaped dielectric pillars (T1 and T2) with different aspect ratios are chosen as basic structures and crossed at the geometric center to achieve manipulation. The larger pillar T2 controls the longer wavelength through the PB phase while the smaller T1 acts as a perturbation to T2. The crossed T1&T2 is studied as a whole to tune the short wavelength. The investigations by the multipole expansion method reveal that the polarization conversion ratio of the meta-atoms is dependent on the interference of the formed multipoles. To validate the proposed strategy, a dual-wavelength achromatic metalens and a wavelength-multiplexed holographic metasurface operating at the infrared thermal imaging band are designed. Our design strategy can find widespread applications in metasurfaces where multiple objectives are required to be realized.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3